Math 249 Lecture 23 Notes

Daniel Raban

October 16, 2017

1 Combinatorial Species

Last time, we said that a combinatorial species is a functor from the category of finite sets
with bijections as morphisms to itself, where the functor takes a set S and associates to it
the set of structures of a certain type on S.

1.1 Examples and exponential generating functions

Example 1.1. The functor L(S) = {linear orderings of S} is a species.
Example 1.2. The functor P(S) = {permutations of S} is a species.
Example 1.3. The functor G(S) = {graphs with vertex set S} is a species.
Example 1.4. The functor II(S) = {set partitions of S} is a species.

Definition 1.1. If we have a species A, we associate to it the exponential generating
function F4 (sometimes just denoted as A), where

Fa@) = S 1A 2
n=0 :

Example 1.5. Let L be the species of linear orderings. Then we have

1
1—2a

[ee] l’n
L L(x) = g nl— =
n!
n=0

Example 1.6. Let P be the species of permutations. Then we have
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Example 1.7. Let G be the species that takes a set of labeled vertices to the set of graphs
on those vertices. Then we have

G Gx) = iz@)f’;.
n=0 ’

We can also weight these by the number of edges in the graph.

) =30+ 9B
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This is a mized generating function because it is exponential in x and ordinary in ¢. So
the number of graphs with k edges on n labeled vertices is the coefficient of ¢*2™/n!.

Example 1.8. Let II be the species of set partitions. Then we have
= x" e_q
II—Il(z) = ZB(n)F =e“ 77,
n=0

where B(n) is the Bell number n.
Definition 1.2. The trivial species is E(S) = {@} for all S.
Example 1.9. The exponential generating function for the trivial species F is
— z — T
E(x) = Z e
n=0

Definition 1.3. An indicator species X, is

X,(5) = {{@} S| =k

%} otherwise.

Example 1.10. Here are a few examples of exponential generating functions for indicator
species.
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Xeven = cosh(z) =



1.2 Operations on species

Definition 1.4. Given species A, B, we define species addition as
(A4 B)(S) = A(S) 1 B(S).
We define species multiplication as
(AB)(S)= [ A(S1) x B(S).
S=51115>

Species addition gives us the collection of structures on S of either structure A or
structure B. Species multiplication gives us the collection of structures on S where part
of S has structure A and part of S has structure B; we then must take the disjoint union
over all ways to split .S up into two parts.

Proposition 1.1. Let A and B be species. Then
Farp=Fa+ Fg,
Fap = FaFB.
Proof. Addition follows straightforwardly from the definition:

Favn =3 JA@) B 2 = S 1AGD 7+ 32 1B & = Fat Fo.
n=0 n=0
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=0 n:

For multiplication, we have:
o0 xn
Fap(z) = |AB([n])| )
n=0 ’

To find the size of AB([n]), we split [n] into the disjoint union of two subsets of sizes
k and ¢, respectively. For each size k, there are (}) ways to partition S, A([k]) choices
of structures of size k, and B([¢]) choices of structures of size £. The choices of the two
structures are independent of each other.
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Now the inside terms do not depend on n, so we can eliminate the dependence on n in the
sums.
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Example 1.11. If we want a linear ordering, we either have the empty set, which has 1
ordering, or we can pick a least element and then apply the ordering to the rest of the set.
This gives us

L= XO —+ XlL,

L(z) =14 xL(x).

So L(z) = {2, as we already know.

Example 1.12. Let M(S) = {maps S — [k]}. Then M (S) = E*, so
Mi(e) = (b = ke = 3 B g

|
n:

1.3 Stirling numbers

Definition 1.5. The Stirling number S(n, k) is the number of partitions of an n-element
set into k nonempty blocks.

Example 1.13. Let’s compute S(3, k) for different values of k.
S3,00=0 S5B,1)=1 8(3,2)=3 S5(3,3)=1.
Proposition 1.2. The Stirling numbers satisfy the recurrence relation:
S(n,k)=5mn—-1,k—1)+kS(n—1,k).

Proof. If we have n — 1 numbers and we add the number n, we have 2 choices of what
to do with n. We can put it in a block by itself, or we can add it to one of the existing
blocks. In the first case, we reduce to the number of ways to make k — 1 blocks with n — 1
elements. In the second case, there are k choices of which block to place n in, so we have
k times the number of ways to make k£ blocks with n — 1 elements. O

Let’s compute some of the values of S(n, k) using this recurrence relation.

n\k|O 1 2 3 4 5
0 10 0 0 0 O
1 01 0 0O O O
2 /01 1 0 0 O
3 |01 3 1 0 0
4 |01 7 6 1 0
5) 0 1 15 25 10 1
Note that k!S(n,k) = |[{surjective maps [n] — [k]}|. So we can define the species

Vi(S) = {surjective maps S — [k]}. We get



Vi = (Xz0)" = (B — Xo)F,
Vi(z) = (e" — 1)F

This shows us something about Stirling numbers:
o :rn
> KIS(n k)= = (" — 1),
=~ n!

If we fix k, we have

o0 " em_lk 1 k k .
Z()S(n,k)n! = (k') = MZ(_)(—N Jel®,

Taking the coefficient of " /n!, we get

1 k
S(n,k):ﬁz



