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1 Combinatorial Species

Last time, we said that a combinatorial species is a functor from the category of finite sets
with bijections as morphisms to itself, where the functor takes a set S and associates to it
the set of structures of a certain type on S.

1.1 Examples and exponential generating functions

Example 1.1. The functor L(S) = {linear orderings of S} is a species.

Example 1.2. The functor P (S) = {permutations of S} is a species.

Example 1.3. The functor G(S) = {graphs with vertex set S} is a species.

Example 1.4. The functor Π(S) = {set partitions of S} is a species.

Definition 1.1. If we have a species A, we associate to it the exponential generating
function FA (sometimes just denoted as A), where

FA(x) =

∞∑
n=0

|A([n])| x
n

n!
.

Example 1.5. Let L be the species of linear orderings. Then we have

L 7→ L(x) =
∞∑
n=0

n!
xn

n!
=

1

1− x
.

Example 1.6. Let P be the species of permutations. Then we have

P 7→ P (x) =
1

1− x
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Example 1.7. Let G be the species that takes a set of labeled vertices to the set of graphs
on those vertices. Then we have

G 7→ G(x) =
∞∑
n=0

2(n2)
xn

n!
.

We can also weight these by the number of edges in the graph.

G(x, q) =

∞∑
n=0

(1 + q)(
n
2)
xn

n!
.

This is a mixed generating function because it is exponential in x and ordinary in q. So
the number of graphs with k edges on n labeled vertices is the coefficient of qkxn/n!.

Example 1.8. Let Π be the species of set partitions. Then we have

Π 7→ Π(x) =
∞∑
n=0

B(n)
xn

n!
= ee

x−1,

where B(n) is the Bell number n.

Definition 1.2. The trivial species is E(S) = {∅} for all S.

Example 1.9. The exponential generating function for the trivial species E is

E(x) =
∞∑
n=0

xn

n!
= ex.

Definition 1.3. An indicator species Xk is

Xk(S) =

{
{∅} |S| = k

∅ otherwise.

Example 1.10. Here are a few examples of exponential generating functions for indicator
species.

Xk(x) =
xk

k!

X6=0 = ex − 1

Xeven = cosh(x) =
ex + e−x

2
.
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1.2 Operations on species

Definition 1.4. Given species A,B, we define species addition as

(A + B)(S) = A(S)qB(S).

We define species multiplication as

(AB)(S) =
∐

S=S1qS2

A(S1)×B(S2).

Species addition gives us the collection of structures on S of either structure A or
structure B. Species multiplication gives us the collection of structures on S where part
of S has structure A and part of S has structure B; we then must take the disjoint union
over all ways to split S up into two parts.

Proposition 1.1. Let A and B be species. Then

FA+B = FA + FB,

FAB = FAFB.

Proof. Addition follows straightforwardly from the definition:

FA+B =
∞∑
n=0

|A([n])qB([n])| x
n

n!
=
∞∑
n=0

|A([n])| x
n

n!
+
∞∑
n=0

|B([n])| x
n

n!
= FA + FB.

For multiplication, we have:

FAB(x) =

∞∑
n=0

|AB([n])| x
n

n!

To find the size of AB([n]), we split [n] into the disjoint union of two subsets of sizes
k and `, respectively. For each size k, there are

(
n
k

)
ways to partition S, A([k]) choices

of structures of size k, and B([`]) choices of structures of size `. The choices of the two
structures are independent of each other.

=

∞∑
n=0

∑
k+`=n

(
n

k

)
A([k])B([`])

xn

n!

=
∞∑
n=0

∑
k+`=n

��n!

k!`!
A([k])B([`])

xk+`

��n!

Now the inside terms do not depend on n, so we can eliminate the dependence on n in the
sums.

=
∑
k,`≥0

A([k])

k!

B([`])

`!
xk+`

= FA(x)FB(x).
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Example 1.11. If we want a linear ordering, we either have the empty set, which has 1
ordering, or we can pick a least element and then apply the ordering to the rest of the set.
This gives us

L ∼= X0 + X1L,

L(x) = 1 + xL(x).

So L(x) = 1
1−x , as we already know.

Example 1.12. Let Mk(S) = {maps S → [k]}. Then Mk(S) = Ek, so

Mk(x) = (ek)x = ekx =
∞∑
n=0

(kx)n

n!
=

∞∑
n=0

kn
xn

n!
.

1.3 Stirling numbers

Definition 1.5. The Stirling number S(n, k) is the number of partitions of an n-element
set into k nonempty blocks.

Example 1.13. Let’s compute S(3, k) for different values of k.

S(3, 0) = 0 S(3, 1) = 1 S(3, 2) = 3 S(3, 3) = 1.

Proposition 1.2. The Stirling numbers satisfy the recurrence relation:

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. If we have n − 1 numbers and we add the number n, we have 2 choices of what
to do with n. We can put it in a block by itself, or we can add it to one of the existing
blocks. In the first case, we reduce to the number of ways to make k− 1 blocks with n− 1
elements. In the second case, there are k choices of which block to place n in, so we have
k times the number of ways to make k blocks with n− 1 elements.

Let’s compute some of the values of S(n, k) using this recurrence relation.

n \ k 0 1 2 3 4 5

0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 1 0 0 0
3 0 1 3 1 0 0
4 0 1 7 6 1 0
5 0 1 15 25 10 1

Note that k!S(n, k) = |{surjective maps [n]→ [k]}|. So we can define the species
Vk(S) = {surjective maps S → [k]}. We get
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Vk = (X6=0)
k = (E −X0)

k,

Vk(x) = (ex − 1)k

This shows us something about Stirling numbers:

∞∑
n=0

k!S(n, k)
xn

n!
= (ex − 1)k.

If we fix k, we have

∞∑
n=0

S(n, k)
xn

n!
=

(ex − 1)k

k!
=

1

k!

k∑
j=0

(
k

j

)
(−1)k−jejx.

Taking the coefficient of xn/n!, we get

S(n, k) =
1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn.
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